
 Trials and Tribulations of Novices Working with the Arduino

Kayla DesPortes
 Steinhardt School of Culture,

Education and Human Development
 New York University
New York, NY USA

 kayla.desportes@nyu.edu

Betsy DiSalvo
 College of Computing

Georgia Institute of Technology
 Atlanta, GA USA

 bdisalvo@cc.gatech.edu

ABSTRACT
Physical computing has grown over the past decade leading to
diverse experiences and tools for novices. Despite the variety of
tools, Arduinos remain a leading choice in education. However,
few studies examine how novices are learning about the
programming and electronics concepts, and how tools impact
their experience. The research presented reports on the
qualitative analysis of a laboratory study in which 31 novices
work with the Arduino for the first time. Video and audio
recordings captured participants’ actions and thoughts as they
used the Arduino platform with a blocks-based programming
environment, and two electronics prototyping tools—the standard
Breadboard and a modular breadboard called BitBlox. The study
presents three main contributions to the literature: first, it
provides a codebook of the common breakdowns faced by novices;
second, it offers insight into the work processes of novices; and
third, it demonstrates ways that the tools used by novices can
affect their experience.

CCS CONCEPTS
• Social and professional topics ~ Computational science and
engineering education

KEYWORDS
Physical Computing, Arduino, Novice Programming, Think-
Aloud, Blocks-Based Programming

ACM Reference format:
Kayla DesPortes and Betsy DiSalvo. 2019. Trials and Tribulations of
Novices Working with the Arduino. In Proceedings of the ACM
International Computing Education Research conference (ICER’19). ACM,
Toronto, ON, CA, 9 pages. http://dx.doi.org/10.1145/3291279.3339427

1 Introduction
Physical computing continues to gain traction in computing

educational spaces. The combination of the physical capabilities

of the electronics with the power of computer science provides
unique pathways to integrate computing into disciplines where
the physicality is important to the experience. For instance,
combining computing and sports [14], dance [11], and clothing
design [7].

As the opportunities grow, so do the options for physical
computing tools. The Arduino open-source prototyping platform
now has over 25 variants [46]. Further, the tools have continued
to drop in price—the Raspberry Pi Zero can run a Linux operating
system and retails for $5 [34]. Physical computing tools have been
developed to attend to specific environmental needs, such as the
GoGo Board—built to be low-cost and locally produced [39], the
Micro:Bit—designed with children in mind [21], and the Circuit
Playground—created to minimize the tools necessary to create
with the hardware [22]. Despite the numerous options educators
now have, the Arduino remains a prevalent choice in education.

The Arduino platform was developed in 2005 to help artists
and designers build, tinker, and evolve their work through
providing access to programmable hardware [38]. Touted for its
low cost and flexibility, the platform has integrated into a wide
range of educational experiences from engineering [19], to dance
[12], to entrepreneurship [45]. Though its use is widespread, the
complexity of the tool has led researchers to criticize its use with
novices [3]. In light of these concerns, it is important that research
is directed towards understanding how to support novices in these
environments such that we can develop the literature surrounding
designing tools and scaffolds for novices in physical computing.
The study presented in this paper closely examines how 31
novices are learning with the Arduino, investigating:

RQ. What are novice students’ experiences when working
with the Arduino for the first time?

(i) What are the common breakdowns, misconceptions and
obstacles of novices?

(ii) What are the work processes of novices?
(iii) How do the software and hardware tools affect novices’

experiences?

2 Background Literature
Physical computing has demonstrated the power to expand

the concepts learners can engage with and the types of computing
environments it can create [9, 30, 32, 35]. The literature illustrates
promise for broadening learners’ perspectives of computing [26]
and diversifying the learners who are interested in computing [4].
However, working with programming and electronics together is
difficult. Grover et al. found that while the Arduino was a low-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ICER '19, August 12–14, 2019, Toronto, ON, Canada
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6185-9/19/08...$15.00.
DOI: http://dx.doi.org/10.1145/3291279.3339427

Session 8: Looking at Students in Particular Classes ICER '19, August 12–14, 2019, Toronto, ON, Canada

219

cost and effective tool for their college mechatronics course, they
concluded that in future work they would require prerequisites of
programming and electronics [19]. Given its prevalence and
complexity, we need to develop a better understanding of these
learning environments.

2.1 Learning in Physical Computing
It was not until recently that researchers began to understand

the types of learning that occur within physical computing
learning environments. Wagh et al. for example, frame the
learning in terms of the computational practices that manifest
[41]. They found that the two most salient practices were (1)
understanding the various hardware and software components
and how they interact, and (2) debugging [41]. A complexity of
factors affect learners’ understanding of the components, such as
the physical and virtual tools and how knowledge is dispersed in
the socio-technical environment. The complications that arise
have led some researchers to find ways around learning
electronics by providing functional circuits so learners can focus
on coding [37]. While this is a valid solution in some situations, it
is also important to understand how to better support learners
with the electronics and code. Some researchers have shed light
on the complexities. Deitrick et al. aptly apply a lens of distributed
cognition demonstrating how “a system of students, teachers, and
tools” use the “physical and virtual affordances of different tools
to organize work, externalize knowledge, and create new
demands for problem solving” [9]. Their case study demonstrates
how the design of tools are linked to the types of interactions they
enable emphasizing the importance for the literature to build our
understanding of technology’s role in the learning environment.

The other prominent work in this space has focused on the
difficulties of debugging in physical computing. Most notably the
work centered on novice experiences with the LilyPad Arduino
[18, 23, 26, 31]. Kafai et al. specifically integrate debugging
exercises into their curriculum yet still find that it posed great
challenges for novices [26]. Noting the importance of debugging,
Fields et al. present a deconstruction kit, “in which students fix, or
debug, strategically built-in problems” as a way to understand
what students are learning [18]. Jayathirtha et al. explore the
debugging practices of novices through documentation in
portfolios and retrospective interviews [23]. Their study found
bugs evenly distributed across coding, crafting, and electronics.
Two thirds of the coding errors were simple involving syntactical
mistakes and mislabeling of variables, while the other third
involved complex conceptual errors such as correctly translating
mathematical concepts within their code. The crafting errors dealt
with the difficulties faced integrating the electronics into the
materials. Depending on the physical computing application, the
materiality poses a variety of problems for novices. The
electronics presented equally challenging problems with learners
having difficulties translating their own paper circuits into their
physical circuits. While their reflective analysis provides insight
into some of the errors, they do not draw out the nuances in the
types of errors. The authors call for an examination of novices
debugging in the moment. Our study does just this, providing real-
time analysis of novices working with the Arduino.

2.2 Arduino Lab Studies
Three studies have begun to provide empirical evidence for

understanding the types of complications that arise while building
with the Arduino. Booth et al. investigate a set of experienced

adult participants using an Arduino to control LEDs using a
temperature sensor [5]. Despite having experience, only 6 of the
20 participants successfully completed the task. The participants
ran into more software issues than hardware issues, however, the
majority of issues that inhibited the participants from completing
the task were hardware issues. The issues stemmed from using
the hardware tools incorrectly and from their inability to debug
their system. Booth et al. conclude that there is a need for better
tools for debugging, and for understanding how to better educate
the end-user developer [5].

Sadler et al.’s study is one of the few studies investigating the
issues novices have with the Arduino [36]. The study analyzed
video data from a study conducted by Jung et al. [24] in which 68
participants learned from an animated agent for 10min, then
explored with the Arduino for another 15min. Sadler et al.
reported that 47% of the participants could not get through the
Blinky LED tutorial without researcher intervention. The most
prevalent error was incorrectly connecting components using the
breadboard—the same issue reported on in Booth et al.’s study [5].
They further identified hardware issues participants encountered,
such as theoretical misunderstandings leading to incorrect
circuits, leaving out wires in their circuits, misconceptions about
how the breadboard works, and confusion over the hardware
components. The participants also encountered syntactical and
usability issues when using the text-based programming
environment. Both Sadler et al. [36] and Booth et al.’s [5] findings
convey a need to further understanding the tools.

Adding to this work, Booth et al. [6] closely explored the
software, investigating blocks-based versus text-based languages
when using the Arduino. In this study, each participant completed
two tasks: one task involved remixing code to extend its
functionality, and the other task involved creating code from
scratch to complete a task. The participants were given the
completed circuits to use with their code. They found that the task
completion was low in both environments but lowest in the text-
based environment; further the text-based environment
correlated to a higher perceived workload and lower self-efficacy
[6]. In terms of the specific errors participants encountered, the
text-based environment contributed to added syntactical issues,
which mirror findings in studies comparing blocks and text-based
environments [42, 43]. Participants also had issues in the blocks-
based environment—i.e. making the blocks do what they wanted
them to, connecting blocks correctly, and navigating the variety
of blocks in the environment. Both environments encountered
issues with users having low visibility into their code [6].

In conjunction to highlighting the complexity of these
learning environments, the studies present three key
opportunities to build upon. First, while the Arduino is often used
with novices, Sadler et al.’s work [36] is the only study that
examined the real-time issues novices face. Due to the open-ended
nature of the experiment, the findings were not linked to the
participants’ activities. This leaves an opportunity for
understanding learners’ work processes in a controlled task to
contextualize the problems novices encounter. Second, the studies
demonstrate hardware errors, but the studies do not closely
examine how the design of the hardware related to these
experiences. Similar to Booth et al.’s study examining the two
software environments [6], there are opportunities to
comparatively explore hardware prototyping tools and their
impact on the learners’ experiences. Third, the prior work
demonstrates the difficulty of debugging. We provide insight into
novices’ debugging processes and how they might be improved.

Session 8: Looking at Students in Particular Classes ICER '19, August 12–14, 2019, Toronto, ON, Canada

220

3 Methods
The study comprised of 31 novice college students working

through a set of activities to learn about and build with the
Arduino. For the software, learners used a blocks-based
programming environment called ModKit (Figure 3). For the
hardware, learners worked with two tools: the standard
Breadboard (Figure 1), and the BitBlox modules (Figure 2).

Figure 1: Breadboard with outlines of connections schemes
for the sections of electrically connected Rows and
Columns

(a) (b) (c)
Figure 2: BitBlox Modules (a) module with one section that
is electrically connected, (b) module with two sections, and
(c) module with five sections

The tools work in the same way—i.e. plug in components to a
section that is electrically connected. However, the Breadboard
has two connection schemes: the outer rows, which are
electrically connected and the inner columns, which are
electrically connected. The BitBlox, have more variations in their
connections and use colors to identify this. Users can snap them
together building their prototyping tool as they build their circuits.
The two tools were used to understand how novices interact with
them and how their experience is shaped by them.

3.1 Participants
The study recruited novice participants from 8 universities at

both the graduate and undergraduate levels. In order to qualify for
the study, participants completed a pre-study screening survey
that inquired about their previous experiences (informal and
formal) with programming and electronics and their self-reported
expertise in the subjects. Participants with any college course in
electronics or programming were excluded, along with
participants that rated themselves as having high expertise.
Further, if they had any CS or multiple electronics courses in high
school, or participated in extracurricular activities within the
disciplines, they were excluded.

The 31 participants that qualified were admitted on rolling
admission to the study and upon admission they were divided into
two groups in order to determine which tool they would use first.

Group 1 [G1] used the BitBlox then the Breadboard, and Group 2
[G2] used the Breadboard then the BitBlox. Within each group,
five participants engaged in a concurrent think-aloud protocol,
which required the participants to verbalize their thoughts while
working through the study [17]. These ten participants provided
added insight into the confusions and thoughts of participants.
The participant demographics are outlined in Table 1.

Table 1. Participant Demographics per Group.
 Tota

l
Gender Level Age

 Num. M F O UGrad Grad Range
Group 1 15 5 10 0 13 2 18-25
Group 2 16 7 8 1 14 2 17-26

M = Male; F = Female; O=Gender Fluid;
UGrad = Undergraduate; Grad = Graduate

3.2 Study Protocol and Materials
The study protocol took about two hours per participant and

consisted of eight steps. Depending on the participant’s group,
she/he would use a different hardware tool for a particular step.

Table 2. Protocol for Study

(1) Pre-Tests: Self-Efficacy and Knowledge
(2) Review of Electronics
(3) Introduction to Arduino and Modkit [Tool#1]
(4) Intro to Prototyping Tool and Blinky LED [Tool#1]
(5) Task #1: Blinking Two LEDs Separately [Tool#1]
(6) Introduction to Prototyping Tool [Tool#2]
(7) Task #2: Two LED circuit [Tool#2]
(8) Post-Tests: Self-Efficacy and Knowledge

After the study was introduced and participants signed the IRB
approved consent form, they began the experiment following a
PDF guide on the computer, which took them through the study
procedure. First, the participants took the pre-tests gauging their
self-efficacy and knowledge. Next, the learners were provided a
refresher to basic high school electronics covering how electricity
flows through a circuit and the functions of LEDs, resistors and
batteries as they constructed a circuit with alligator clips. The
learners proceeded through an introduction of the Arduino,
Modkit (blocks-based software IDE), and their first prototyping
tool—G1: BitBlox; G2: Breadboard. They were then walked
through step-by-step instructions on how to apply their
prototyping tool and the code blocks to create Blinky LED—an
introductory Arduino activity that makes an LED blink forever.
Next, they completed the tasks, which were problems the learner
had to complete without step-by-step instructions. The
instructions for Task #1 and Task #2 are in Table 3 below. After
the participant completed Task #1, they were provided an
introduction to their second prototyping tool, and then completed
Task #2. Next, the participants took the post-tests (same as pre-
tests), completed a short interview and wrapped-up the study. The
think-aloud participants went through the study first, and their
data provided feedback to improve the PDF guide before the non-
think-aloud participants entered the study.

The participants inevitably had difficulties as they were
working and needed hints from the researchers. In the think-
aloud participants, the researchers followed a protocol offering

Session 8: Looking at Students in Particular Classes ICER '19, August 12–14, 2019, Toronto, ON, Canada

221

more specific hints each time. After the participant had been
stuck for 1min or unsuccessfully debugging for 5min, the hints
were provided in the following order: (1) identify the location of
the problem (HW-hardware/SW-software/HW+SW) » (2) Provide
general debugging hints for the location of the problem (ex. HW—
make sure your wires are pushed down) » (3) Identify the specific
issue » (4) Identify how they could solve the problem.

In order to minimize the researcher interactions in the non-
think-aloud protocol, we created four sets of hints based on
findings from the think-aloud group: (1) HW debugging hints, (2)
SW debugging hints, (3) Task #1 hints, and (4) Task #2 hints. To
receive the hints participants had to ask for them. The hardware
and software hints consisted of a sheet of debugging checks the
participants received all at once (ex. HW—make sure your wires
are pushed down). The task hints were distributed one at a time
and successively explained how to complete the task. The guide
informed and reminded the participants about the hints.

Table 3. Participant Tasks

Task #1: Blinking Two LEDs Separately
Create two LED/Resistor circuits and hook them up to two
different pins. Create a sequence of code to blink one of the
LEDs twice then blink the second LED once. Repeat the entire
sequence over and over again forever. The code should have
the following effect:

Blink LED1 » Blink LED1 » Blink LED2 »
Blink LED1 » Blink LED1 » Blink LED2 » (con’t forever)

Task #2: Two LED circuit
You are going to build the circuit
to the right. Instead of just one
LED at pin 3, you’re going to hook
up two LEDs with a resistor to pin
3. Go ahead and create the circuit
and modify your code
appropriately to make the LEDs
continuously blink forever.

3.3 Data Collection and Analysis
The data collection consisted of pre-/post-tests and video and

audio recording of the sessions. The pre- and post-test were
identical and measured the self-efficacy and the knowledge of the
participants. Self-efficacy links one’s perceived competence in a
particular domain to perform tasks and overcome challenges [2].
The measure of self-efficacy in the domains of programming,
electronics and physical computing, allowed us to understand
how the tools might affect one’s motivation to work with physical
computing in the future. The self-efficacy test was composed of
21 seven-point Likert Scale questions constructed using four of
the questions from Ramalingam and Wiedenbeck’s computer
programming self-efficacy scale [33]. The remaining questions
use the same structure but the content was modified for our
context. One question was accidentally clipped to a 5 point scale,
but it was done in all of the think-aloud participants pre-/post-
tests, so its impact was minimal.

The participants’ knowledge was tested using a 15-point test.
The first three questions (worth 2-points each) were adapted from
Osborne’s [29] method of drawing a complete circuit, which was
previously adapted in a physical computing study [31]. This was
supplemented by 9 multiple choice questions (worth 1-point
each)—three questions required analysis of a circuit, three

required analysis of code, and three required analysis of a circuit
and code together. The test was designed to understand
participants’ ability to analyze forever loops, the effect of code on
a circuit, the effect of delays in the code, pin numbers within the
write functions, polarity of the LEDs, sequential reasoning in
electronics and the effect of using multiple resistances.

In addition to the tests, 59 hours of video and audio data were
recorded. Screen-capture data from the laptop documented how
participants traversed the PDF guide and their interactions with
the software. A webcam was synced to the screen capture and
pointed at the participants’ workspace to record the electronics
(Figure 3). A backup camera provided a second perspective of the
workspace. Since the non-think-aloud participants did not have
the added audio to contextualize their actions, the researcher
recorded notes to log interactions with the hardware in
conjunction with the status of the code and circuit to link the
notes to the video data.

Figure 3: Screen capture linked with webcam recording

To analyze the data, one researcher coded one third of the video
data for emergent themes and found that the coding scheme from
Booth et al.’s prior study investigating skilled adult participants
working with the Arduino matched closely to the identified
themes [5]. Based on the initial coding, the researcher expanded
the codebook to provide greater insight into the types of
breakdowns that the novice participants encountered. Similar to
Booth et al.’s study [5], the videos were coded for obstacles, bugs,
and breakdowns and where the issues occurred (i.e. HW, SW, or a
combination HW+SW). The obstacles referred to questions or
confusions participants had. The bugs were errors that led to
broken or improper functionality and were also coded for whether
they were being introduced or fixed. While the bugs indicated
when an error was introduced in the setup, a breakdown indicated
whenever there was any type of misconception, mistake, or error
even if it did not lead to the introduction of a bug. All bugs had at
least one breakdown, but not all breakdowns led to bugs.

The researcher then applied the expanded codebook to the
final two thirds of the data. To ensure validity of the coded data,
a second researcher reviewed the codebook over transcriptions of
5% of the coded segments. The researchers clarified and refined
the codebook and process for coding the data to ensure it was
consistent and represented the data appropriately. The first and
second researcher separately analyzed and coded another 10% of
the video transcriptions using the updated codebook. The
researchers reached an inter-rater reliability Pooled Kappa Cohen
[8] score of 84% based on this analysis. The first researcher used
the refined codebook (Table 4) to go back through the data,
reviewing and correcting the rest of the segments. The final
codebook resulted in seven software (SW) breakdowns, seven
hardware (HW) breakdowns, and four breakdowns spanning the
hardware and software (HW+SW).

Session 8: Looking at Students in Particular Classes ICER '19, August 12–14, 2019, Toronto, ON, Canada

222

Table 4. Codebook of Breakdowns

SW HW HW+SW
Blocks Not
 Connected

Incorrect Circuit
 Formation

Programming without
 Plugging in the Arduino

Delay Leaves out
 Component

Reprograms Arduino
 with the Same Code

Pin Signal
(HIGH/LOW)

LED
 Backwards

Wrong Assessment of
 Bug Location

PinMode Open Circuit Incorrectly Thinks
 Problem is Solved

Sequentiality
 of Code

Short Circuit

Wrong
 Arduino Pin

Wrong
 Arduino Pin

Other Other

4 Findings

4.1 Self-Efficacy and Knowledge Tests
We will briefly touch on the pre- and post-tests, then expand on
the more relevant findings from the qualitative analysis. The
scores were broken up by group (Group 1 [G1]: BitBlox »
Breadboard; Group 2 [G2]: Breadboard » BitBlox) to see if the
ordering of the tool had a significant impact. Further, they were
separated by think-aloud [T] participants (5 per group) and non-
think-aloud [NT] participants (10 per group) to understand
whether having to think-aloud might have affected their scores.

Participants entered the study with a relatively low self-
efficacy (between 53-62pts), and had a similar improvement in
score across groups. Out of 145pts G1[T]’s average score
improved by 50pts and G2[T] by 48pts. Similarly, out of 147pts,
G1[NT] improved by 51.2pts and G2[NT] by 62.5pts. The
knowledge pre-tests were correspondingly low. Out of 15pts, the
averages across the groups were between 3-4.5pts. Of the 31
participants, only one correctly placed paper components of a
battery, LED, and resistor and drew wires properly in order to
make a working circuit, confirming the success of the pre-study
screening survey to recruit novices. In the post-test, 26 of the 31
participants succeeded in this task. The average change in
knowledge for the groups was—G1[NT] 7.1 | G2[NT] 7.4 | G1[T]
6.2 | G2[T] 9—with final scores between 9.2-11.5 out of 15. The
think-aloud participants had the highest and lowest change in
knowledge scores showing there was not a correlated drop in
knowledge based on the learners having to think aloud. The
spread also shows there was not a significant difference based on
the tool participants used first.

4.2 Working with the Software
The participants encountered more breakdowns with the software
than with the hardware. The six most common types of
breakdowns were: referencing the wrong Arduino pin,
misunderstanding how code would execute sequentially,
incorrectly using (or not using) a pinMode to initialize a hardware
pin as an input or output, incorrectly sending signals to the pins
as HIGH (5v) or LOW (0v), incorrectly using or interpreting the
delay block, and incorrectly connecting blocks in the IDE (see
Figure 4). The Other category was for less prevalent errors.

Figure 4. Software Errors by Tool

4.2.1 Understanding Code Compilation and Execution. The
largest number of breakdowns in the software came from
participants’ lack of understanding of how their code would
execute—i.e. sequentiality of code. The majority of these mistakes
occurred during Task #1 where the participants had to create two
circuits and make them blink in a defined sequence (i.e. Blink LED
1 Blink LED 1 Blink LED 2 [repeat forever]). The three most
common errors were: (1) creating two chunks of code with two
forever loops, (2) attaching code after a forever loop, and (3)
nesting one forever loop inside of another. When Modkit compiles
the code for two separate forever loops it does not run them at the
same time, since the Arduino cannot support this. Instead, it runs
the code that the user last touched but gives no indication of which
piece of code this is. Participants ran into obstacles when
something that was working would stop working because the
participants touched another piece of code as they were working.

Outside of the misconception of how the computer interprets
code, the thought process for creating these two chunks of code is
inherently incorrect. If the two blocks ran in parallel, the LEDs
would blink at the same time not sequentially, as the task
instructed. Participants were generally unsure of how to add code
for a second LED and often switched between several incorrect
configurations, which gave varying responses based on which
code was touched last and their current code configuration.

4.2.2 Software Initialization of Hardware Pins. The pinMode
code block caused the second most breakdowns in the
participants’ reasoning. The block initializes the Arduino pins as
either input or output so that they are setup to receive or send
information. The two most common errors were: (1) not using a
pinMode to initialize one of their pins as an output, or (2) using a
pinMode and leaving it as an input instead of changing it to an
output. Participants generally included at least one pinMode for
the first LED, but then chose not to use it for the second or forgot
it was necessary. One participant trying to figure out where she
should put a second pinMode asked, “can one pinMode go under
another pinMode though? Maybe?” Other participants put the
pinMode into the into the forever loop unsure of whether this
would work. Not knowing where the pinMode could go, led some
participants to introduce a bug creating two chunks of code.

Some participants did not change the default initialization of
the pinMode. While most participants overlooked the need to
change from the default setting of input, some struggled with the
general concept of input and output, “yeah I still don’t understand
this whole input/output thing but I trust that it says output”.

4.2.3 Delay Block: Avoidable Misconceptions and Indications of
Being Stuck. The delay code block demonstrated how poor
explanations could cause misconceptions. The wording in the
initial guide for the think-aloud section caused many participants
to think that the delay caused the blinking of the LED. As one

21
15

10
8

18
28

13

21
13

15
10

28
22

8

0 10 20 30 40 50

Other
Blocks Not Connected

Delay
Pin Signal (HIGH/LOW)

PinMode
Sequentiality of Code

Wrong Arduino Pin

Breadboard
BitBlox

Session 8: Looking at Students in Particular Classes ICER '19, August 12–14, 2019, Toronto, ON, Canada

223

participant reflected, “hmm [reading from the guide] ‘we will now
add a second digitalWrite but this time make it so we turn the LED
off’ see like that’s where I’m kind of confused because if we want it
to blink forever then why are we turning it off? cause like the delay
is what makes it blink not off.” After the 10 think-aloud
participants completed the study, the wording in the guide was
modified to describe the blink using an analogy of light switches
and removed the wording that led participants to believe the delay
caused the blinking. After this change, the misconception
diminished—i.e. 6 of 21 non-think-aloud participants encountered
it compared to 8 of 10 in the think-aloud.

The other common breakdown with the delay function was
using it to fix other issues. For example, participants changed the
delay to, get one of their LEDs to turn on, change the order in
which their LEDs blinked, and to make an LED brighter. Often
times when a participant would change the delay, it was indicative
that the participant was stuck on an issue.

4.2.4 Slips Using Software Tools. Setting the wrong Arduino pin
and sending the wrong pin signal were two of the breakdowns
usually caused by slips rather than conscious decisions. These
slips introduced bugs into the code. Participants would often
forget to change the pin that the code block referenced, the signal
that a digitalWrite was sending, or they would accidentally
choose the wrong selection on the drop-down menu.

Figure 5. Two pieces of code that demonstrate connected
code blocks (left) and unconnected blocks (right)

4.2.5 Errors Connecting Blocks. The last software breakdown
was related to the usability of the IDE for connecting code blocks.
While participants had few obstacles using the IDE, connecting
code blocks consistently led to bugs in the code, which were
difficult to discern. While the software has an indicator when you
are about to connect blocks (i.e. a shadow under the block), there
are no visible indicators to show you when blocks are connected
(Figure 5). One participant who was debugging this issue
eventually moved her blocks around fixing the issue, but she had
no idea how, “something changed. I don’t know what I did…I don’t
think I changed anything.” These findings were consistent with the
barriers Booth et al. identified using same software interface [6].

4.2.6 Exploring New Code Blocks. A number of participants had
varying success as they experimented with new code blocks. In
the guided activities, we covered the usage of four blocks—
pinMode, forever, digitalWrite, and delay—which were the only
blocks needed to complete the activities. However, upon
exploring other blocks, some participants tried using them.
Several participants identified and correctly used the repeat block
to get the first LED in Task #1 to blink twice. The block used
language linked to its usage and did not require additional blocks.

This is consistent with prior work identifying the ease of using
the repeat block [44].

When participants tried integrating other blocks, such as the
while and and blocks, there were breakdowns in how they were
interpreting the blocks. In Kaczmarcyzk et al.’s work they found
that students would apply “real-world semantic understanding to
variable declarations” [25]. Unsurprisingly, our work suggests
that this is how they are initially determining the code blocks’
functionality. Characteristics, such as the size and shape enabled
participants to quickly rule out certain blocks, which physically
did not fit with the other blocks. As one participant stated after
unsuccessfully using a while loop, “so maybe to make them blink
at the same time you don’t do while maybe you do and? [she picks
up the and block from the menu but does not see a way to attach
it] no that doesn’t work.” Blocks that were more similar were more
likely to end up in the code participants uploaded. However, they
never successfully used any additional blocks besides repeat.

Figure 6. Hardware Errors by Activity and Group

4.3 Working with the Hardware
The types of hardware breakdowns provide insight into the

errors that participants encountered when working with the
electronics. There were six consistent breakdowns that emerged:
using the wrong Arduino pin, creating a short circuit, creating an
open circuit, assessing the LED directionality incorrectly, leaving
out a component, and forming their circuit incorrectly (i.e.
components in parallel or series when they should not be).

4.3.1 Breakdowns Correlated with Prototyping Tool. The most
common breakdown was the Open Circuit, which when combined
with the Short Circuit were the two breakdowns that manifested
in different ways based on the prototyping tool used. The Short
Circuit breakdown only occurred twice with the Breadboard, but
occurred 12 times with the BitBlox. The participants introduced
this error by incorrectly interpreting how to use the tool,
purposefully plugging both ends of one component into the same
section of the module. This was also noted in prior work [10].

The open circuit breakdown was twice as prevalent in the
Breadboard than the BitBlox, but persisted across both tools. The
participants using the Breadboard plugged components into holes
that were next to one another but not electrically connected. Prior
work noted similar open circuit issues with the breadboard [5, 36].
Open circuits in the BitBlox were sometimes caused because
participants setup their circuits incorrectly; however, they more
frequently occurred because the BitBlox that were not snapped
together would spread apart and accidentally pull the components
out of the blocks as they moved. Both of the tools indicated there
were usability issues and a misunderstanding of how electricity
was running through their circuits.

4.3.2 Translating Circuit Connections. The second most
common breakdown was creating incorrect circuit formations—i.e.

6
17

4
8

26
2

7

15
14

2
16

13
12

10

0 5 10 15 20 25 30 35 40

Other
Incorrect Circuit Formation

Leaves out Component
LED Backwards

Open Circuit
Short Circuit

Wrong Arduino Pin Breadboard
BitBlox

Session 8: Looking at Students in Particular Classes ICER '19, August 12–14, 2019, Toronto, ON, Canada

224

placing components in series or parallel when they should not be.
Of the 31 participants, 18 encountered this breakdown. In the first
task, participants should have created two circuits with an LED
and resistor (Figure 7 (left)), but they often combined both LEDs
into one circuit (Figure 7 (right)). This mistake inhibits the LEDs
from being able to blink separately. Participants in the second task
encountered this error from connecting the LEDs and/or resistors
in parallel instead of series (see diagram in Table 3). The
participants either incorrectly interpreted how components in the
diagram connected, or how components in their prototyping tool
connected (and sometimes both). Understanding the purpose of
certain circuit formations and translating the picture to their
representational model of the circuit and then back to the
prototyping tool proved difficult for the participants. The
participants’ issues seemed to be caused by a mix of theoretical
misunderstandings and difficulties with spatial reasoning.

Figure 7. Task #1 correct circuit formation (left) and
common incorrect circuit formation (right)

4.3.3 Issues Using Small Components. The small size of some of

the hardware components led to breakdowns of participants using
the Wrong Arduino Pin and inserting the LED Backwards, which
led to bugs. These findings provide evidence for why participants
in other studies had similar issues [5, 10, 36]. One participant
demonstrates her difficulty assessing the positive side of the LED:
“The positive end is the longer side and the curved side. That one is
longer…the whole thing is curved, so that’s not really a good
representation.” Participants sometimes introduced a bug in order
to check that the directionality of the LED was correct. One
participant in the think-aloud group who was debugging an open-
circuit explained why he switched the LED directionality: “when I
switched it I turned [the] positive side and negative side just to see if
it would do anything different, but it didn’t”.

Participants were also found counting the Arduino pins in
order to make sure they were putting components in the right pin
header. In the think-aloud group, participants had to rely on the
labels on the board, while participants in the non-think-aloud had
labeling directly on the pin headers themselves. Half the think-
aloud participants, introduced a Wrong Arduino Pin, while only 6
of the 21 participants in the non-think-aloud section did.

4.3.4 Correctly Parsing Visual Information. Participants had
obstacles correctly interpreting the relevance of certain visual
cues. For example, not knowing whether or not the wire colors
mattered, wanting to know if the “~” next to the digital pins
(indicative of pulse width modulation capabilities) mattered,
interpreting the pin numbers as voltages, or mistaking the
blinking of the Rx and Tx LEDs on the Arduino (which blink when
code is uploaded) for changes they created using their code. This
also happened with the coloring between the different BitBlox.
Participants sometimes thought they needed to find two separate
BitBlox with the same colored section so that they could properly
connect their components. These obstacles indicate that the
participants are particularly attuned to the various visual cues in
the hardware, but information can be misinterpreted.

4.3.5 Importance of Work Processes for Usability. The BitBlox
had the ability to connect the various blocks by sliding the tongue
and groove edges of the tool together. However, the video footage
revealed that connecting the blocks did not fit seamlessly into
their work processes. Participants often tried connecting the
BitBlox together at the same time they were trying to insert the
component into them (contrasted to connecting two BitBlox first
then sticking the component into the blocks). The participants
therefore usually had to readjust the parts for each component
added to the circuit.

4.4 Working with Hardware + Software
The HW+SW breakdowns capture mistakes and misconceptions
about the interaction between the hardware and software. There
were four breakdowns in this category: incorrectly assessing
where a bug was in their setup, reprogramming the Arduino with
the same code that was already uploaded, programming code to
the Arduino without the Arduino plugged in, and incorrectly
thinking a problem was solved (Figure 9).

Figure 9. Hardware + Software Errors by Activity and
Group

4.4.1 Understanding Uploaded Code. The most common
breakdown was reprogramming the Arduino with the same code.
This was a harmless breakdown and perhaps avoided bugs that
could have occurred had participants not been as diligent in
uploading code. However, it became clear that participants did not
realize the Arduino stored the code on the board. Further,
reprogramming the Arduino consecutively without changing
anything often indicated participants were stuck.

4.4.2 Slips in Plugging in the Arduino. Participants would
accidentally try programming the Arduino without plugging it
into the computer. This was the only breakdown in this category
that introduced a bug and could be harmful to the participants’
success if not identified quickly. The Modkit software indicates
there was an error programming, but participants did not always
see this and if they did, they sometimes interpreted it incorrectly.
Participants that were not able to catch the error quickly iterated
through several versions of their code not knowing what was
correct or incorrect. Not getting the expected feedback from their
circuit skewed participants’ interpretation of what would work in
their code. One participant went through six different iterations
of her code without uploading any of them to the Arduino. At one
point during these iterations, she had the correct code, but never
realized it and ended up not being able to complete the task. The
learners’ attention is often drawn in many directions and when
they upload code they are often looking at the circuit for its
response, which caused them to miss messages on the computer.

4.4.3 Difficulties Debugging. The breakdown of Wrong
Assessment of Bug Location did not introduce a bug but led to the
persistence of bugs. The issue usually occurred when the
participant had a software issue and thought it was in their circuit.

9

13

26

16

11

22

32

19

0 10 20 30 40 50 60

Thinks Problem is Solved

Programming w/o Plugging in Arduino

Reprograms Arduino w/ Same Code

Wrong Assessment of Bug Location

Breadboard BitBlox

Session 8: Looking at Students in Particular Classes ICER '19, August 12–14, 2019, Toronto, ON, Canada

225

For example, when participants created two forever loops or
placed one forever loop after another, it led to a program that
would only light up one of the participant’s LED circuits. Not
realizing their code was wrong, participants often assumed the
issue they were having was in their circuit rather than with their
code leading participants to make changes in their hardware.
Participants would often guess and check certain configurations,
which relied on buggy code or circuits, rather than narrowing
down their problem based on what was working.

The other common breakdown while debugging occurred
when the participant incorrectly thinks the problem is solved. This
generally occurred in situations where participants would forget
to initialize one of their pins as an output. When they would see
the LED dimly blinking, they thought they were done the task.
Other participants were confused if the circuits were responding
the way they intended with their code. For example, if the
participant did not turn an LED low before turning the second one
high—i.e. one was turning on before the second one was off—the
looping response became a difficult problem to reason about. Fast
blinking LEDs from short delays exacerbated participants’ issues.

The findings suggest that participants lacked methods to
check parts of their setup, lacked knowledge of the types of errors
they should check for, and did not realize the importance of
thoroughly checking their assumptions. However, bugs that
participants could easily check for, such as the directionality of
the LED were constantly being defaulted to.

5 Discussion

5.1 Designing around Usability
The findings demonstrated how usability issues, could become
more salient and more complicated with the combination of
hardware and software. In some cases, there were straightforward
solutions, such as enlarging the electronic components, or
labelling parts more clearly. In other cases, the issues posed more
complicated design challenges, such as needing to understand
how learners are interpreting the components. For example, the
color and shape of the code blocks provided some indication of
how they should be used, but participants mostly interpreted their
functionality incorrectly. Learners also struggled understanding
the error messages from the compiler and in some cases did not
even notice them. Research needs to build a better understanding
of how tools could and should communicate with the learners.

The findings also illustrated that participants were
particularly receptive to visual information, but had difficulty
understanding and parsing the information. The Arduino’s visual
design has small text, and a number of functions and information
labelled on the board. The design of these boards could benefit
from pairing down the amount and types of information
presented, while enlarging the design to provide more visible and
comprehensive information. To aid in this, it could be beneficial
to frame the design around multiple boards that guide users
through a learning trajectory, rather than expecting one board to
serve all purposes. This supports prior work, which has called for
bridges [3] and glass-boxes [13] between the current tools.

5.2 Designing around Processes and Practices
The findings also highlighted the need for the environment and
tools to be responsive to the processes novices bring into the
learning environment. Many of the participants’ were making
decisions as they tinkered with the components, modifying their

choices based on feedback (i.e. as a bricoleur [40]). The findings
showed how the technology, could inhibit the learner’s process if
not designed from this perspective. For example, when working
with BitBlox participants had to reconfigure their existing
components when adding new components. The tools need to
take into consideration novices just-in-time designs, assisting
learners in making and testing their iterative modifications.

Learners also had processes in which the tools could be
designed around. When participants were stuck they often would
continuously upload the same code (similar to [28]), and
consecutively change the delays. While these actions were often
innocuous, data on what getting stuck looks like could inform
designs for technology to offer hints or suggestions.

There were also processes that we need to learn more about,
such as the participants’ difficulties translating between different
representations of their circuits. The issues seemed to stem from
issues with spatial reasoning, usability, and theoretical
misconceptions. Jayathirtha et al. [23] noted similar issues,
confirming a need to understand how to scaffold these processes.

The designs of the tools and materials should account for
learners developing new practices—specifically debugging.
Similar to other findings in CS [1, 16, 28], debugging was not
something the participants were able to do without guidance.
Even in Booth et al.’s [5] study debugging was difficult for
experienced participants, and in Kafai et al.’s [26] study, where
they teach debugging skills, it still remained a challenge. We need
to think critically about the ways that the tools can facilitate
learners to identify and test their assumptions, develop systematic
debugging processes, and understand how to use the tools to
isolate components of the hardware and software to validate what
in their design is correct and what is not.

5.3 Designing around Visibility
Participants’ low visibility into how the tools were working often
exacerbated conceptual errors. In the software, participants lacked
insight into how computer was compiling and interpreting their
code, leading to a misunderstanding of what code was running.
The looping structure, inherent to many microcontrollers, also
caused confusion. Researchers in CS education have examined
personifying the compiler [27] and aggregating useful suggestions
based on other programmers actions [20]. Our research confirms
this as an important consideration in physical computing
environments as well.

Similar to the software, participants lacked visibility into the
hardware. Unless everything was setup correctly, there was little
feedback into what was electrically connected, where voltage was
being applied, or where current was actually flowing. Multimeters
are the most prevalent tool for this, but they have steep learning
curves and their own usability challenges. Researchers are
beginning to experiment with other ways to bring visibility to
these signals [15], which could improve conceptual understanding
as well as usage of the tools.

5 Conclusion
The complexity of the physical computing environment presents
a challenging design problem. Our findings suggest that the
design of technology should continue to be explored to improve
usability, more seamlessly integrate and develop the practices and
processes of novices, and provide learners with greater visibility
into the tools and how their designs are functioning.

Session 8: Looking at Students in Particular Classes ICER '19, August 12–14, 2019, Toronto, ON, Canada

226

REFERENCES

[1] Ahmadzadeh, M. et al. 2005. An analysis of patterns of debugging among

novice computer science students. ACM SIGCSE Bulletin. 37, 3 (Sep. 2005),
84. DOI:https://doi.org/10.1145/1151954.1067472.

[2] Bandura, A. 2006. Guide for constructing self-efficacy scales. Self-efficacy
beliefs of adolescents. 5, 307–337 (2006).

[3] Blikstein, P. 2015. Computationally Enhanced Toolkits for Children:
Historical Review and a Framework for Future Design. Foundations and
Trends® in Human–Computer Interaction. 9, 1 (2015), 1–68.
DOI:https://doi.org/10.1561/1100000057.

[4] Blikstein, P. 2013. Digital fabrication and ‘making’in education: The
democratization of invention. FabLabs: Of Machines, Makers and Inventors.
(2013), 1–21.

[5] Booth, T. et al. 2016. Crossed Wires: Investigating the Problems of End-
User Developers in a Physical Computing Task. Proceedings of the 2016
Conference on Human Factors in Computing Systems (2016), 3485–3497.

[6] Booth, T. and Stumpf, S. 2013. End-user experiences of visual and textual
programming environments for Arduino. International Symposium on End
User Development. (2013).

[7] Buechley, L. and Eisenberg, M. 2008. The LilyPad Arduino: Toward
wearable engineering for everyone. Pervasive Computing, IEEE. 7, 2 (2008),
12–15.

[8] De Vries, H. et al. 2008. Using Pooled Kappa to Summarize Interrater
Agreement across Many Items. Field Methods. 20, 3 (Mar. 2008), 272–282.
DOI:https://doi.org/10.1177/1525822X08317166.

[9] Deitrick, E. et al. 2015. Using Distributed Cognition Theory to Analyze
Collaborative Computer Science Learning. (2015), 51–60.

[10] DesPortes, K. et al. 2016. BitBlox: A Redesign of the Breadboard.
Proceedings of the The 15th International Conference on Interaction Design
and Children (2016), 255–261.

[11] DesPortes, K. et al. 2016. Interdisciplinary Computing and the Emergence of
Boundary Objects: A Case-Study of Dance and Technology. International
Society of the Learning Sciences. (In Press 2016).

[12] DesPortes, K. et al. 2016. The MoveLab: Developing Congruence Between
Students’ Self-Concepts and Computing. Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (2016), 267–272.

[13] DesPortes, K. and DiSalvo, B. 2017. Where are the Glass-Boxes?: Examining
the Spectrum of Modularity in Physical Computing Hardware Tools. (2017),
292–297.

[14] Dittert, N. 2014. TechSportiv: constructing objects-to-think-with for
physical education. Proceedings of the 8th Nordic Conference on Human-
Computer Interaction: Fun, Fast, Foundational (2014), 569–577.

[15] Drew, D. et al. 2016. The toastboard: Ubiquitous instrumentation and
automated checking of breadboarded circuits. Proceedings of the 29th Annual
Symposium on User Interface Software and Technology (2016), 677–686.

[16] Edwards, S.H. 2004. Using software testing to move students from trial-and-
error to reflection-in-action. ACM SIGCSE Bulletin. 36, 1 (Mar. 2004), 26.
DOI:https://doi.org/10.1145/1028174.971312.

[17] Ericsson, A. and Simon, H.A. 1980. Verbal Reports as Data + Ericsson.pdf.
Psychological review. 87, 3 (1980), 215.

[18] Fields, D.A. et al. 2016. Deconstruction kits for learning: Students’
collaborative debugging of electronic textile designs. Proceedings of the 6th
Annual Conference on Creativity and Fabrication in Education (2016), 82–85.

[19] Grover, R. et al. 2014. A competition-based approach for undergraduate
mechatronics education using the arduino platform. Fourth Interdisciplinary
Engineering Design Education Conference (2014), 78–83.

[20] Hartmann, B. et al. What Would Other Programmers Do? Suggesting
Solutions to Error Messages. 10.

[21] Inspire every child to create their best digital future: 2019.
https://microbit.org/about/. Accessed: 2019-04-01.

[22] Introducing Circuit Playground: 2016.
https://learn.adafruit.com/introducing-circuit-playground/overview.
Accessed: 2019-04-01.

[23] Jayathirtha, G. et al. 2018. Computational concepts, practices, and
collaboration in high school students’ debugging electronic textile projects.
Proceedings of International Conference on Computational Thinking Education
(2018).

[24] Jung, M.F. et al. 2014. Participatory materials: having a reflective

conversation with an artifact in the making. Proceedings of the 2014
conference on Designing interactive systems (2014), 25–34.

[25] Kaczmarczyk, L.C. et al. 2010. Identifying student misconceptions of
programming. Proceedings of the 41st ACM technical symposium on Computer
science education (2010), 107–111.

[26] Kafai, Y.B. et al. 2014. A Crafts-Oriented Approach to Computing in High
School: Introducing Computational Concepts, Practices, and Perspectives
with Electronic Textiles. ACM Transactions on Computing Education. 14, 1
(Mar. 2014), 1–20. DOI:https://doi.org/10.1145/2576874.

[27] Lee, M.J. and Ko, A.J. Personifying Programming Tool Feedback Improves
Novice Programmersʼ Learning. 8.

[28] Murphy, L. et al. Debugging: The Good, the Bad, and the Quirky – a
Qualitative Analysis of Novices’ Strategies. 5.

[29] Osborne, R. 1983. Towards modifying children’s ideas about electric current.
Research in Science & Technological Education. 1, 1 (1983), 73–82.

[30] Papert, S. 1993. Mindstorms: Children, computers, and powerful ideas. Basic
Books.

[31] Peppler, K. and Glosson, D. 2013. Stitching Circuits: Learning About
Circuitry Through E-textile Materials. Journal of Science Education and
Technology. 22, 5 (Oct. 2013), 751–763. DOI:https://doi.org/10.1007/s10956-
012-9428-2.

[32] Perlman, R. 1974. "TORTIS: Toddler’s Own Recursive Turtle Interpreter
System.

[33] Ramalingam, V. and Wiedenbeck, S. 1998. Development and validation of
scores on a computer programming self-efficacy scale and group analyses
of novice programmer self-efficacy. Journal of Educational Computing
Research. 19, 4 (1998), 367–381.

[34] Raspberry Pi/Pi Zero/Pi Zero V1.3: 2019.
https://www.adafruit.com/category/934?src=raspberrypi. Accessed: 2019-04-
01.

[35] Resnick, M. 1995. New Paradigms for Computing, New Paradigms for
Thinking. Computers and Exploratory Learning (Berlin, 1995), 31–43.

[36] Sadler, J. et al. 2017. Building blocks in creative computing: modularity
increases the probability of prototyping novel ideas. International Journal of
Design Creativity and Innovation. 5, 3–4 (Oct. 2017), 168–184.
DOI:https://doi.org/10.1080/21650349.2015.1136796.

[37] Searle, K. et al. 2016. The E-Textiles Bracelet Hack: Bringing Making to
Middle School Classrooms. Proceedings of the 6th Annual Conference on
Creativity and Fabrication in Education (Standford, CA, 2016), 107–110.

[38] Severance, C. 2014. Massimo Banzi: Building Arduino. Computer. 47, 1
(2014), 11–12.

[39] Sipitakiat, A. et al. 2004. GoGo board: augmenting programmable bricks for
economically challenged audiences. Proceedings of the 6th international
conference on Learning sciences (2004), 481–488.

[40] Turkle, S. and Papert, S. 1990. Epistemological pluralism. Signs: Journal of
Women in Culture and Society. 1, 16 (1990), 11.

[41] Wagh, A. et al. 2017. The Role of Computational Thinking Practices in
Making: How Beginning Youth Makers Encounter & Appropriate CT
Practices in Making. Proceedings of the 7th Annual Conference on Creativity
and Fabrication in Education (Standford, CA, 2017), 1–8.

[42] Weintrop, D. and Wilensky, U. 2015. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. Proceedings
of the 14th International Conference on Interaction Design and Children (2015),
199–208.

[43] Weintrop, D. and Wilensky, U. 2015. Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-based and Text-based
Programs. Proceedings of the eleventh annual International Conference on
International Computing Education Research (2015), 101–110.

[44] Weintrop, D. and Wilensky, U. 2015. Using Commutative Assessments to
Compare Conceptual Understanding in Blocks-based and Text-based
Programs. (2015), 101–110.

[45] Zhang, X. et al. 2018. Design and Practice of Arduino Experiments for
“E&I” Oriented Education. Proceedings of ACM Turing Celebration
Conference-China (China, 2018), 21–26.

[46] 2019. List of Arduino boards and compatible systems. Wikipedia.

Session 8: Looking at Students in Particular Classes ICER '19, August 12–14, 2019, Toronto, ON, Canada

227

