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ABSTRACT 
Physical computing has grown over the past decade leading to 
diverse experiences and tools for novices. Despite the variety of 
tools, Arduinos remain a leading choice in education. However, 
few studies examine how novices are learning about the 
programming and electronics concepts, and how tools impact 
their experience. The research presented reports on the 
qualitative analysis of a laboratory study in which 31 novices 
work with the Arduino for the first time. Video and audio 
recordings captured participants’ actions and thoughts as they 
used the Arduino platform with a blocks-based programming 
environment, and two electronics prototyping tools—the standard 
Breadboard and a modular breadboard called BitBlox. The study 
presents three main contributions to the literature: first, it 
provides a codebook of the common breakdowns faced by novices; 
second, it offers insight into the work processes of novices; and 
third, it demonstrates ways that the tools used by novices can 
affect their experience. 
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1 Introduction 
Physical computing continues to gain traction in computing 

educational spaces. The combination of the physical capabilities 

of the electronics with the power of computer science provides 
unique pathways to integrate computing into disciplines where 
the physicality is important to the experience. For instance, 
combining computing and sports [14], dance [11], and clothing 
design [7].  

As the opportunities grow, so do the options for physical 
computing tools. The Arduino open-source prototyping platform 
now has over 25 variants [46]. Further, the tools have continued 
to drop in price—the Raspberry Pi Zero can run a Linux operating 
system and retails for $5 [34]. Physical computing tools have been 
developed to attend to specific environmental needs, such as the 
GoGo Board—built to be low-cost and locally produced [39], the 
Micro:Bit—designed with children in mind [21], and the Circuit 
Playground—created to minimize the tools necessary to create 
with the hardware [22]. Despite the numerous options educators 
now have, the Arduino remains a prevalent choice in education.  

The Arduino platform was developed in 2005 to help artists 
and designers build, tinker, and evolve their work through 
providing access to programmable hardware [38]. Touted for its 
low cost and flexibility, the platform has integrated into a wide 
range of educational experiences from engineering [19], to dance 
[12], to entrepreneurship [45]. Though its use is widespread, the 
complexity of the tool has led researchers to criticize its use with 
novices [3]. In light of these concerns, it is important that research 
is directed towards understanding how to support novices in these 
environments such that we can develop the literature surrounding 
designing tools and scaffolds for novices in physical computing. 
The study presented in this paper closely examines how 31 
novices are learning with the Arduino, investigating:  

RQ. What are novice students’ experiences when working 
with the Arduino for the first time? 

(i) What are the common breakdowns, misconceptions and 
obstacles of novices?  

(ii) What are the work processes of novices? 
(iii) How do the software and hardware tools affect novices’ 

experiences?  

2 Background Literature  
Physical computing has demonstrated the power to expand 

the concepts learners can engage with and the types of computing 
environments it can create [9, 30, 32, 35]. The literature illustrates 
promise for broadening learners’ perspectives of computing [26] 
and diversifying the learners who are interested in computing [4]. 
However, working with programming and electronics together is 
difficult. Grover et al. found that while the Arduino was a low-
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cost and effective tool for their college mechatronics course, they 
concluded that in future work they would require prerequisites of 
programming and electronics [19]. Given its prevalence and 
complexity, we need to develop a better understanding of these 
learning environments. 

2.1 Learning in Physical Computing 
It was not until recently that researchers began to understand 

the types of learning that occur within physical computing 
learning environments. Wagh et al. for example, frame the 
learning in terms of the computational practices that manifest 
[41]. They found that the two most salient practices were (1) 
understanding the various hardware and software components 
and how they interact, and (2) debugging [41]. A complexity of 
factors affect learners’ understanding of the components, such as 
the physical and virtual tools and how knowledge is dispersed in 
the socio-technical environment. The complications that arise 
have led some researchers to find ways around learning 
electronics by providing functional circuits so learners can focus 
on coding [37]. While this is a valid solution in some situations, it 
is also important to understand how to better support learners 
with the electronics and code. Some researchers have shed light 
on the complexities. Deitrick et al. aptly apply a lens of distributed 
cognition demonstrating how “a system of students, teachers, and 
tools” use the “physical and virtual affordances of different tools 
to organize work, externalize knowledge, and create new 
demands for problem solving” [9]. Their case study demonstrates 
how the design of tools are linked to the types of interactions they 
enable emphasizing the importance for the literature to build our 
understanding of technology’s role in the learning environment.  

The other prominent work in this space has focused on the 
difficulties of debugging in physical computing. Most notably the 
work centered on novice experiences with the LilyPad Arduino 
[18, 23, 26, 31]. Kafai et al. specifically integrate debugging 
exercises into their curriculum yet still find that it posed great 
challenges for novices [26]. Noting the importance of debugging, 
Fields et al. present a deconstruction kit, “in which students fix, or 
debug, strategically built-in problems” as a way to understand 
what students are learning [18]. Jayathirtha et al. explore the 
debugging practices of novices through documentation in 
portfolios and retrospective interviews [23]. Their study found 
bugs evenly distributed across coding, crafting, and electronics. 
Two thirds of the coding errors were simple involving syntactical 
mistakes and mislabeling of variables, while the other third 
involved complex conceptual errors such as correctly translating 
mathematical concepts within their code. The crafting errors dealt 
with the difficulties faced integrating the electronics into the 
materials. Depending on the physical computing application, the 
materiality poses a variety of problems for novices. The 
electronics presented equally challenging problems with learners 
having difficulties translating their own paper circuits into their 
physical circuits. While their reflective analysis provides insight 
into some of the errors, they do not draw out the nuances in the 
types of errors. The authors call for an examination of novices 
debugging in the moment. Our study does just this, providing real-
time analysis of novices working with the Arduino.  

2.2 Arduino Lab Studies 
Three studies have begun to provide empirical evidence for 

understanding the types of complications that arise while building 
with the Arduino. Booth et al. investigate a set of experienced 

adult participants using an Arduino to control LEDs using a 
temperature sensor [5]. Despite having experience, only 6 of the 
20 participants successfully completed the task. The participants 
ran into more software issues than hardware issues, however, the 
majority of issues that inhibited the participants from completing 
the task were hardware issues. The issues stemmed from using 
the hardware tools incorrectly and from their inability to debug 
their system. Booth et al. conclude that there is a need for better 
tools for debugging, and for understanding how to better educate 
the end-user developer [5].  

Sadler et al.’s study is one of the few studies investigating the 
issues novices have with the Arduino [36]. The study analyzed 
video data from a study conducted by Jung et al. [24] in which 68 
participants learned from an animated agent for 10min, then 
explored with the Arduino for another 15min. Sadler et al. 
reported that 47% of the participants could not get through the 
Blinky LED tutorial without researcher intervention. The most 
prevalent error was incorrectly connecting components using the 
breadboard—the same issue reported on in Booth et al.’s study [5]. 
They further identified hardware issues participants encountered, 
such as theoretical misunderstandings leading to incorrect 
circuits, leaving out wires in their circuits, misconceptions about 
how the breadboard works, and confusion over the hardware 
components. The participants also encountered syntactical and 
usability issues when using the text-based programming 
environment. Both Sadler et al. [36] and Booth et al.’s [5] findings 
convey a need to further understanding the tools.  

Adding to this work, Booth et al. [6] closely explored the 
software, investigating blocks-based versus text-based languages 
when using the Arduino. In this study, each participant completed 
two tasks: one task involved remixing code to extend its 
functionality, and the other task involved creating code from 
scratch to complete a task. The participants were given the 
completed circuits to use with their code. They found that the task 
completion was low in both environments but lowest in the text-
based environment; further the text-based environment 
correlated to a higher perceived workload and lower self-efficacy 
[6]. In terms of the specific errors participants encountered, the 
text-based environment contributed to added syntactical issues, 
which mirror findings in studies comparing blocks and text-based 
environments [42, 43]. Participants also had issues in the blocks-
based environment—i.e. making the blocks do what they wanted 
them to, connecting blocks correctly, and navigating the variety 
of blocks in the environment. Both environments encountered 
issues with users having low visibility into their code [6].  

In conjunction to highlighting the complexity of these 
learning environments, the studies present three key 
opportunities to build upon. First, while the Arduino is often used 
with novices, Sadler et al.’s work [36] is the only study that 
examined the real-time issues novices face. Due to the open-ended 
nature of the experiment, the findings were not linked to the 
participants’ activities. This leaves an opportunity for 
understanding learners’ work processes in a controlled task to 
contextualize the problems novices encounter. Second, the studies 
demonstrate hardware errors, but the studies do not closely 
examine how the design of the hardware related to these 
experiences. Similar to Booth et al.’s study examining the two 
software environments [6], there are opportunities to 
comparatively explore hardware prototyping tools and their 
impact on the learners’ experiences. Third, the prior work 
demonstrates the difficulty of debugging. We provide insight into 
novices’ debugging processes and how they might be improved.  
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3 Methods  
The study comprised of 31 novice college students working 

through a set of activities to learn about and build with the 
Arduino. For the software, learners used a blocks-based 
programming environment called ModKit (Figure 3). For the 
hardware, learners worked with two tools: the standard 
Breadboard (Figure 1), and the BitBlox modules (Figure 2). 

 
Figure 1: Breadboard with outlines of connections schemes 
for the sections of electrically connected Rows and 
Columns 

(a) (b) (c)  
Figure 2: BitBlox Modules (a) module with one section that 
is electrically connected, (b) module with two sections, and 
(c) module with five sections 

The tools work in the same way—i.e. plug in components to a 
section that is electrically connected. However, the Breadboard 
has two connection schemes: the outer rows, which are 
electrically connected and the inner columns, which are 
electrically connected. The BitBlox, have more variations in their 
connections and use colors to identify this. Users can snap them 
together building their prototyping tool as they build their circuits. 
The two tools were used to understand how novices interact with 
them and how their experience is shaped by them.  

3.1 Participants 
The study recruited novice participants from 8 universities at 

both the graduate and undergraduate levels. In order to qualify for 
the study, participants completed a pre-study screening survey 
that inquired about their previous experiences (informal and 
formal) with programming and electronics and their self-reported 
expertise in the subjects. Participants with any college course in 
electronics or programming were excluded, along with 
participants that rated themselves as having high expertise. 
Further, if they had any CS or multiple electronics courses in high 
school, or participated in extracurricular activities within the 
disciplines, they were excluded. 

The 31 participants that qualified were admitted on rolling 
admission to the study and upon admission they were divided into 
two groups in order to determine which tool they would use first. 

Group 1 [G1] used the BitBlox then the Breadboard, and Group 2 
[G2] used the Breadboard then the BitBlox. Within each group, 
five participants engaged in a concurrent think-aloud protocol, 
which required the participants to verbalize their thoughts while 
working through the study [17]. These ten participants provided 
added insight into the confusions and thoughts of participants. 
The participant demographics are outlined in Table 1. 

Table 1. Participant Demographics per Group.  
 Tota

l 
Gender Level Age 

 Num. M F O  UGrad Grad Range 
Group 1 15 5 10 0 13 2 18-25 
Group 2 16 7 8 1 14 2 17-26 

M = Male; F = Female; O=Gender Fluid;  
UGrad = Undergraduate; Grad = Graduate 

3.2 Study Protocol and Materials 
The study protocol took about two hours per participant and 

consisted of eight steps. Depending on the participant’s group, 
she/he would use a different hardware tool for a particular step.  

Table 2. Protocol for Study 

(1) Pre-Tests: Self-Efficacy and Knowledge 
(2) Review of Electronics 
(3) Introduction to Arduino and Modkit [Tool#1] 
(4) Intro to Prototyping Tool and Blinky LED [Tool#1]  
(5) Task #1: Blinking Two LEDs Separately [Tool#1] 
(6) Introduction to Prototyping Tool [Tool#2] 
(7) Task #2: Two LED circuit [Tool#2] 
(8) Post-Tests: Self-Efficacy and Knowledge 

After the study was introduced and participants signed the IRB 
approved consent form, they began the experiment following a 
PDF guide on the computer, which took them through the study 
procedure. First, the participants took the pre-tests gauging their 
self-efficacy and knowledge. Next, the learners were provided a 
refresher to basic high school electronics covering how electricity 
flows through a circuit and the functions of LEDs, resistors and 
batteries as they constructed a circuit with alligator clips. The 
learners proceeded through an introduction of the Arduino, 
Modkit (blocks-based software IDE), and their first prototyping 
tool—G1: BitBlox; G2: Breadboard. They were then walked 
through step-by-step instructions on how to apply their 
prototyping tool and the code blocks to create Blinky LED—an 
introductory Arduino activity that makes an LED blink forever. 
Next, they completed the tasks, which were problems the learner 
had to complete without step-by-step instructions. The 
instructions for Task #1 and Task #2 are in Table 3 below. After 
the participant completed Task #1, they were provided an 
introduction to their second prototyping tool, and then completed 
Task #2. Next, the participants took the post-tests (same as pre-
tests), completed a short interview and wrapped-up the study. The 
think-aloud participants went through the study first, and their 
data provided feedback to improve the PDF guide before the non-
think-aloud participants entered the study.       

The participants inevitably had difficulties as they were 
working and needed hints from the researchers. In the think-
aloud participants, the researchers followed a protocol offering 
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more specific hints each time. After the participant had been 
stuck for 1min or unsuccessfully debugging for 5min, the hints 
were provided in the following order: (1) identify the location of 
the problem (HW-hardware/SW-software/HW+SW) » (2) Provide 
general debugging hints for the location of the problem (ex. HW—
make sure your wires are pushed down) » (3) Identify the specific 
issue » (4) Identify how they could solve the problem.  

In order to minimize the researcher interactions in the non-
think-aloud protocol, we created four sets of hints based on 
findings from the think-aloud group: (1) HW debugging hints, (2) 
SW debugging hints, (3) Task #1 hints, and (4) Task #2 hints. To 
receive the hints participants had to ask for them. The hardware 
and software hints consisted of a sheet of debugging checks the 
participants received all at once (ex. HW—make sure your wires 
are pushed down). The task hints were distributed one at a time 
and successively explained how to complete the task. The guide 
informed and reminded the participants about the hints.  

Table 3. Participant Tasks  

Task #1: Blinking Two LEDs Separately 
Create two LED/Resistor circuits and hook them up to two 
different pins. Create a sequence of code to blink one of the 
LEDs twice then blink the second LED once. Repeat the entire 
sequence over and over again forever. The code should have 
the following effect: 

Blink LED1 » Blink LED1 » Blink LED2 » 
Blink LED1 » Blink LED1 » Blink LED2 » (con’t forever) 

Task #2: Two LED circuit 
You are going to build the circuit 
to the right. Instead of just one 
LED at pin 3, you’re going to hook 
up two LEDs with a resistor to pin 
3. Go ahead and create the circuit 
and modify your code 
appropriately to make the LEDs 
continuously blink forever. 

3.3 Data Collection and Analysis  
The data collection consisted of pre-/post-tests and video and 

audio recording of the sessions. The pre- and post-test were 
identical and measured the self-efficacy and the knowledge of the 
participants. Self-efficacy links one’s perceived competence in a 
particular domain to perform tasks and overcome challenges [2]. 
The measure of self-efficacy in the domains of programming, 
electronics and physical computing, allowed us to understand 
how the tools might affect one’s motivation to work with physical 
computing in the future. The self-efficacy test was composed of 
21 seven-point Likert Scale questions constructed using four of 
the questions from Ramalingam and Wiedenbeck’s computer 
programming self-efficacy scale [33]. The remaining questions 
use the same structure but the content was modified for our 
context. One question was accidentally clipped to a 5 point scale, 
but it was done in all of the think-aloud participants pre-/post-
tests, so its impact was minimal. 

The participants’ knowledge was tested using a 15-point test. 
The first three questions (worth 2-points each) were adapted from 
Osborne’s [29] method of drawing a complete circuit, which was 
previously adapted in a physical computing study [31]. This was 
supplemented by 9 multiple choice questions (worth 1-point 
each)—three questions required analysis of a circuit, three 

required analysis of code, and three required analysis of a circuit 
and code together. The test was designed to understand 
participants’ ability to analyze forever loops, the effect of code on 
a circuit, the effect of delays in the code, pin numbers within the 
write functions, polarity of the LEDs, sequential reasoning in 
electronics and the effect of using multiple resistances. 

In addition to the tests, 59 hours of video and audio data were 
recorded. Screen-capture data from the laptop documented how 
participants traversed the PDF guide and their interactions with 
the software. A webcam was synced to the screen capture and 
pointed at the participants’ workspace to record the electronics 
(Figure 3). A backup camera provided a second perspective of the 
workspace. Since the non-think-aloud participants did not have 
the added audio to contextualize their actions, the researcher 
recorded notes to log interactions with the hardware in 
conjunction with the status of the code and circuit to link the 
notes to the video data. 

 
Figure 3: Screen capture linked with webcam recording 

 
To analyze the data, one researcher coded one third of the video 
data for emergent themes and found that the coding scheme from 
Booth et al.’s prior study investigating skilled adult participants 
working with the Arduino matched closely to the identified 
themes [5]. Based on the initial coding, the researcher expanded 
the codebook to provide greater insight into the types of 
breakdowns that the novice participants encountered. Similar to 
Booth et al.’s study [5], the videos were coded for obstacles, bugs, 
and breakdowns and where the issues occurred (i.e. HW, SW, or a 
combination HW+SW). The obstacles referred to questions or 
confusions participants had. The bugs were errors that led to 
broken or improper functionality and were also coded for whether 
they were being introduced or fixed. While the bugs indicated 
when an error was introduced in the setup, a breakdown indicated 
whenever there was any type of misconception, mistake, or error 
even if it did not lead to the introduction of a bug. All bugs had at 
least one breakdown, but not all breakdowns led to bugs.  

The researcher then applied the expanded codebook to the 
final two thirds of the data. To ensure validity of the coded data, 
a second researcher reviewed the codebook over transcriptions of 
5% of the coded segments. The researchers clarified and refined 
the codebook and process for coding the data to ensure it was 
consistent and represented the data appropriately. The first and 
second researcher separately analyzed and coded another 10% of 
the video transcriptions using the updated codebook. The 
researchers reached an inter-rater reliability Pooled Kappa Cohen 
[8] score of 84% based on this analysis. The first researcher used 
the refined codebook (Table 4) to go back through the data, 
reviewing and correcting the rest of the segments. The final 
codebook resulted in seven software (SW) breakdowns, seven 
hardware (HW) breakdowns, and four breakdowns spanning the 
hardware and software (HW+SW).  
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Table 4. Codebook of Breakdowns  

SW HW HW+SW 
Blocks Not  
  Connected 

Incorrect Circuit  
  Formation 

Programming without  
  Plugging in the Arduino 

Delay Leaves out  
  Component 

Reprograms Arduino  
  with the Same Code 

Pin Signal 
(HIGH/LOW) 

LED  
  Backwards 

Wrong Assessment of  
  Bug Location 

PinMode Open Circuit Incorrectly Thinks  
  Problem is Solved 

Sequentiality    
  of Code 

Short Circuit  

Wrong 
  Arduino Pin 

Wrong  
  Arduino Pin 

Other Other 

4 Findings 

4.1 Self-Efficacy and Knowledge Tests  
We will briefly touch on the pre- and post-tests, then expand on 
the more relevant findings from the qualitative analysis. The 
scores were broken up by group (Group 1 [G1]: BitBlox » 
Breadboard; Group 2 [G2]: Breadboard » BitBlox) to see if the 
ordering of the tool had a significant impact. Further, they were 
separated by think-aloud [T] participants (5 per group) and non-
think-aloud [NT] participants (10 per group) to understand 
whether having to think-aloud might have affected their scores.  

Participants entered the study with a relatively low self-
efficacy (between 53-62pts), and had a similar improvement in 
score across groups. Out of 145pts G1[T]’s average score 
improved by 50pts and G2[T] by 48pts. Similarly, out of 147pts, 
G1[NT] improved by 51.2pts and G2[NT] by 62.5pts. The 
knowledge pre-tests were correspondingly low. Out of 15pts, the 
averages across the groups were between 3-4.5pts. Of the 31 
participants, only one correctly placed paper components of a 
battery, LED, and resistor and drew wires properly in order to 
make a working circuit, confirming the success of the pre-study 
screening survey to recruit novices. In the post-test, 26 of the 31 
participants succeeded in this task. The average change in 
knowledge for the groups was—G1[NT] 7.1 | G2[NT] 7.4 | G1[T] 
6.2 | G2[T] 9—with final scores between 9.2-11.5 out of 15. The 
think-aloud participants had the highest and lowest change in 
knowledge scores showing there was not a correlated drop in 
knowledge based on the learners having to think aloud. The 
spread also shows there was not a significant difference based on 
the tool participants used first.  

4.2 Working with the Software 
The participants encountered more breakdowns with the software 
than with the hardware. The six most common types of 
breakdowns were: referencing the wrong Arduino pin, 
misunderstanding how code would execute sequentially, 
incorrectly using (or not using) a pinMode to initialize a hardware 
pin as an input or output, incorrectly sending signals to the pins 
as HIGH (5v) or LOW (0v), incorrectly using or interpreting the 
delay block, and incorrectly connecting blocks in the IDE (see 
Figure 4). The Other category was for less prevalent errors.  
 

 
Figure 4. Software Errors by Tool 

4.2.1 Understanding Code Compilation and Execution. The 
largest number of breakdowns in the software came from 
participants’ lack of understanding of how their code would 
execute—i.e. sequentiality of code. The majority of these mistakes 
occurred during Task #1 where the participants had to create two 
circuits and make them blink in a defined sequence (i.e. Blink LED 
1  Blink LED 1  Blink LED 2 [repeat forever]). The three most 
common errors were: (1) creating two chunks of code with two 
forever loops, (2) attaching code after a forever loop, and (3) 
nesting one forever loop inside of another. When Modkit compiles 
the code for two separate forever loops it does not run them at the 
same time, since the Arduino cannot support this. Instead, it runs 
the code that the user last touched but gives no indication of which 
piece of code this is. Participants ran into obstacles when 
something that was working would stop working because the 
participants touched another piece of code as they were working.  

Outside of the misconception of how the computer interprets 
code, the thought process for creating these two chunks of code is 
inherently incorrect. If the two blocks ran in parallel, the LEDs 
would blink at the same time not sequentially, as the task 
instructed. Participants were generally unsure of how to add code 
for a second LED and often switched between several incorrect 
configurations, which gave varying responses based on which 
code was touched last and their current code configuration.  

4.2.2 Software Initialization of Hardware Pins. The pinMode 
code block caused the second most breakdowns in the 
participants’ reasoning. The block initializes the Arduino pins as 
either input or output so that they are setup to receive or send 
information. The two most common errors were: (1) not using a 
pinMode to initialize one of their pins as an output, or (2) using a 
pinMode and leaving it as an input instead of changing it to an 
output. Participants generally included at least one pinMode for 
the first LED, but then chose not to use it for the second or forgot 
it was necessary. One participant trying to figure out where she 
should put a second pinMode asked, “can one pinMode go under 
another pinMode though? Maybe?” Other participants put the 
pinMode into the into the forever loop unsure of whether this 
would work. Not knowing where the pinMode could go, led some 
participants to introduce a bug creating two chunks of code. 

Some participants did not change the default initialization of 
the pinMode. While most participants overlooked the need to 
change from the default setting of input, some struggled with the 
general concept of input and output, “yeah I still don’t understand 
this whole input/output thing but I trust that it says output”.  

4.2.3 Delay Block: Avoidable Misconceptions and Indications of 
Being Stuck. The delay code block demonstrated how poor 
explanations could cause misconceptions. The wording in the 
initial guide for the think-aloud section caused many participants 
to think that the delay caused the blinking of the LED. As one 
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participant reflected, “hmm [reading from the guide] ‘we will now 
add a second digitalWrite but this time make it so we turn the LED 
off’ see like that’s where I’m kind of confused because if we want it 
to blink forever then why are we turning it off? cause like the delay 
is what makes it blink not off.” After the 10 think-aloud 
participants completed the study, the wording in the guide was 
modified to describe the blink using an analogy of light switches 
and removed the wording that led participants to believe the delay 
caused the blinking. After this change, the misconception 
diminished—i.e. 6 of 21 non-think-aloud participants encountered 
it compared to 8 of 10 in the think-aloud.  

The other common breakdown with the delay function was 
using it to fix other issues. For example, participants changed the 
delay to, get one of their LEDs to turn on, change the order in 
which their LEDs blinked, and to make an LED brighter. Often 
times when a participant would change the delay, it was indicative 
that the participant was stuck on an issue. 

4.2.4 Slips Using Software Tools. Setting the wrong Arduino pin 
and sending the wrong pin signal were two of the breakdowns 
usually caused by slips rather than conscious decisions. These 
slips introduced bugs into the code. Participants would often 
forget to change the pin that the code block referenced, the signal 
that a digitalWrite was sending, or they would accidentally 
choose the wrong selection on the drop-down menu.  

 
Figure 5. Two pieces of code that demonstrate connected 
code blocks (left) and unconnected blocks (right) 

4.2.5 Errors Connecting Blocks. The last software breakdown 
was related to the usability of the IDE for connecting code blocks. 
While participants had few obstacles using the IDE, connecting 
code blocks consistently led to bugs in the code, which were 
difficult to discern. While the software has an indicator when you 
are about to connect blocks (i.e. a shadow under the block), there 
are no visible indicators to show you when blocks are connected 
(Figure 5). One participant who was debugging this issue 
eventually moved her blocks around fixing the issue, but she had 
no idea how, “something changed. I don’t know what I did…I don’t 
think I changed anything.” These findings were consistent with the 
barriers Booth et al. identified using same software interface [6]. 

4.2.6 Exploring New Code Blocks. A number of participants had 
varying success as they experimented with new code blocks. In 
the guided activities, we covered the usage of four blocks—
pinMode, forever, digitalWrite, and delay—which were the only 
blocks needed to complete the activities. However, upon 
exploring other blocks, some participants tried using them. 
Several participants identified and correctly used the repeat block 
to get the first LED in Task #1 to blink twice. The block used 
language linked to its usage and did not require additional blocks. 

This is consistent with prior work identifying the ease of using 
the repeat block [44].  

When participants tried integrating other blocks, such as the 
while and and blocks, there were breakdowns in how they were 
interpreting the blocks. In Kaczmarcyzk et al.’s work they found 
that students would apply “real-world semantic understanding to 
variable declarations” [25]. Unsurprisingly, our work suggests 
that this is how they are initially determining the code blocks’ 
functionality. Characteristics, such as the size and shape enabled 
participants to quickly rule out certain blocks, which physically 
did not fit with the other blocks. As one participant stated after 
unsuccessfully using a while loop, “so maybe to make them blink 
at the same time you don’t do while maybe you do and? [she picks 
up the and block from the menu but does not see a way to attach 
it] no that doesn’t work.” Blocks that were more similar were more 
likely to end up in the code participants uploaded. However, they 
never successfully used any additional blocks besides repeat.  

 
Figure 6. Hardware Errors by Activity and Group 

4.3 Working with the Hardware  
The types of hardware breakdowns provide insight into the 

errors that participants encountered when working with the 
electronics. There were six consistent breakdowns that emerged: 
using the wrong Arduino pin, creating a short circuit, creating an 
open circuit, assessing the LED directionality incorrectly, leaving 
out a component, and forming their circuit incorrectly (i.e. 
components in parallel or series when they should not be).  

4.3.1 Breakdowns Correlated with Prototyping Tool. The most 
common breakdown was the Open Circuit, which when combined 
with the Short Circuit were the two breakdowns that manifested 
in different ways based on the prototyping tool used. The Short 
Circuit breakdown only occurred twice with the Breadboard, but 
occurred 12 times with the BitBlox. The participants introduced 
this error by incorrectly interpreting how to use the tool, 
purposefully plugging both ends of one component into the same 
section of the module. This was also noted in prior work [10].  

The open circuit breakdown was twice as prevalent in the 
Breadboard than the BitBlox, but persisted across both tools. The 
participants using the Breadboard plugged components into holes 
that were next to one another but not electrically connected. Prior 
work noted similar open circuit issues with the breadboard [5, 36]. 
Open circuits in the BitBlox were sometimes caused because 
participants setup their circuits incorrectly; however, they more 
frequently occurred because the BitBlox that were not snapped 
together would spread apart and accidentally pull the components 
out of the blocks as they moved. Both of the tools indicated there 
were usability issues and a misunderstanding of how electricity 
was running through their circuits.  

4.3.2 Translating Circuit Connections. The second most 
common breakdown was creating incorrect circuit formations—i.e. 
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placing components in series or parallel when they should not be. 
Of the 31 participants, 18 encountered this breakdown. In the first 
task, participants should have created two circuits with an LED 
and resistor (Figure 7 (left)), but they often combined both LEDs 
into one circuit (Figure 7 (right)). This mistake inhibits the LEDs 
from being able to blink separately. Participants in the second task 
encountered this error from connecting the LEDs and/or resistors 
in parallel instead of series (see diagram in Table 3). The 
participants either incorrectly interpreted how components in the 
diagram connected, or how components in their prototyping tool 
connected (and sometimes both). Understanding the purpose of 
certain circuit formations and translating the picture to their 
representational model of the circuit and then back to the 
prototyping tool proved difficult for the participants. The 
participants’ issues seemed to be caused by a mix of theoretical 
misunderstandings and difficulties with spatial reasoning.    

 
Figure 7. Task #1 correct circuit formation (left) and 
common incorrect circuit formation (right) 

 
4.3.3 Issues Using Small Components. The small size of some of 

the hardware components led to breakdowns of participants using 
the Wrong Arduino Pin and inserting the LED Backwards, which 
led to bugs. These findings provide evidence for why participants 
in other studies had similar issues [5, 10, 36]. One participant 
demonstrates her difficulty assessing the positive side of the LED: 
“The positive end is the longer side and the curved side. That one is 
longer…the whole thing is curved, so that’s not really a good 
representation.” Participants sometimes introduced a bug in order 
to check that the directionality of the LED was correct. One 
participant in the think-aloud group who was debugging an open-
circuit explained why he switched the LED directionality: “when I 
switched it I turned [the] positive side and negative side just to see if 
it would do anything different, but it didn’t”. 

Participants were also found counting the Arduino pins in 
order to make sure they were putting components in the right pin 
header. In the think-aloud group, participants had to rely on the 
labels on the board, while participants in the non-think-aloud had 
labeling directly on the pin headers themselves. Half the think-
aloud participants, introduced a Wrong Arduino Pin, while only 6 
of the 21 participants in the non-think-aloud section did.  

4.3.4 Correctly Parsing Visual Information. Participants had 
obstacles correctly interpreting the relevance of certain visual 
cues. For example, not knowing whether or not the wire colors 
mattered, wanting to know if the “~” next to the digital pins 
(indicative of pulse width modulation capabilities) mattered, 
interpreting the pin numbers as voltages, or mistaking the 
blinking of the Rx and Tx LEDs on the Arduino (which blink when 
code is uploaded) for changes they created using their code. This 
also happened with the coloring between the different BitBlox. 
Participants sometimes thought they needed to find two separate 
BitBlox with the same colored section so that they could properly 
connect their components. These obstacles indicate that the 
participants are particularly attuned to the various visual cues in 
the hardware, but information can be misinterpreted.  

4.3.5 Importance of Work Processes for Usability. The BitBlox 
had the ability to connect the various blocks by sliding the tongue 
and groove edges of the tool together. However, the video footage 
revealed that connecting the blocks did not fit seamlessly into 
their work processes. Participants often tried connecting the 
BitBlox together at the same time they were trying to insert the 
component into them (contrasted to connecting two BitBlox first 
then sticking the component into the blocks). The participants 
therefore usually had to readjust the parts for each component 
added to the circuit.  

4.4 Working with Hardware + Software  
The HW+SW breakdowns capture mistakes and misconceptions 
about the interaction between the hardware and software. There 
were four breakdowns in this category: incorrectly assessing 
where a bug was in their setup, reprogramming the Arduino with 
the same code that was already uploaded, programming code to 
the Arduino without the Arduino plugged in, and incorrectly 
thinking a problem was solved (Figure 9). 

 
Figure 9. Hardware + Software Errors by Activity and 
Group 
 

4.4.1 Understanding Uploaded Code. The most common 
breakdown was reprogramming the Arduino with the same code. 
This was a harmless breakdown and perhaps avoided bugs that 
could have occurred had participants not been as diligent in 
uploading code. However, it became clear that participants did not 
realize the Arduino stored the code on the board. Further, 
reprogramming the Arduino consecutively without changing 
anything often indicated participants were stuck.  

4.4.2 Slips in Plugging in the Arduino. Participants would 
accidentally try programming the Arduino without plugging it 
into the computer. This was the only breakdown in this category 
that introduced a bug and could be harmful to the participants’ 
success if not identified quickly. The Modkit software indicates 
there was an error programming, but participants did not always 
see this and if they did, they sometimes interpreted it incorrectly. 
Participants that were not able to catch the error quickly iterated 
through several versions of their code not knowing what was 
correct or incorrect. Not getting the expected feedback from their 
circuit skewed participants’ interpretation of what would work in 
their code. One participant went through six different iterations 
of her code without uploading any of them to the Arduino. At one 
point during these iterations, she had the correct code, but never 
realized it and ended up not being able to complete the task. The 
learners’ attention is often drawn in many directions and when 
they upload code they are often looking at the circuit for its 
response, which caused them to miss messages on the computer.  

4.4.3 Difficulties Debugging. The breakdown of Wrong 
Assessment of Bug Location did not introduce a bug but led to the 
persistence of bugs. The issue usually occurred when the 
participant had a software issue and thought it was in their circuit. 
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For example, when participants created two forever loops or 
placed one forever loop after another, it led to a program that 
would only light up one of the participant’s LED circuits. Not 
realizing their code was wrong, participants often assumed the 
issue they were having was in their circuit rather than with their 
code leading participants to make changes in their hardware. 
Participants would often guess and check certain configurations, 
which relied on buggy code or circuits, rather than narrowing 
down their problem based on what was working.  

The other common breakdown while debugging occurred 
when the participant incorrectly thinks the problem is solved. This 
generally occurred in situations where participants would forget 
to initialize one of their pins as an output. When they would see 
the LED dimly blinking, they thought they were done the task.  
Other participants were confused if the circuits were responding 
the way they intended with their code. For example, if the 
participant did not turn an LED low before turning the second one 
high—i.e. one was turning on before the second one was off—the 
looping response became a difficult problem to reason about. Fast 
blinking LEDs from short delays exacerbated participants’ issues.  

The findings suggest that participants lacked methods to 
check parts of their setup, lacked knowledge of the types of errors 
they should check for, and did not realize the importance of 
thoroughly checking their assumptions. However, bugs that 
participants could easily check for, such as the directionality of 
the LED were constantly being defaulted to.  

5 Discussion 

5.1 Designing around Usability 
The findings demonstrated how usability issues, could become 
more salient and more complicated with the combination of 
hardware and software. In some cases, there were straightforward 
solutions, such as enlarging the electronic components, or 
labelling parts more clearly. In other cases, the issues posed more 
complicated design challenges, such as needing to understand 
how learners are interpreting the components. For example, the 
color and shape of the code blocks provided some indication of 
how they should be used, but participants mostly interpreted their 
functionality incorrectly. Learners also struggled understanding 
the error messages from the compiler and in some cases did not 
even notice them. Research needs to build a better understanding 
of how tools could and should communicate with the learners.  

The findings also illustrated that participants were 
particularly receptive to visual information, but had difficulty 
understanding and parsing the information. The Arduino’s visual 
design has small text, and a number of functions and information 
labelled on the board. The design of these boards could benefit 
from pairing down the amount and types of information 
presented, while enlarging the design to provide more visible and 
comprehensive information. To aid in this, it could be beneficial 
to frame the design around multiple boards that guide users 
through a learning trajectory, rather than expecting one board to 
serve all purposes. This supports prior work, which has called for 
bridges [3] and glass-boxes [13] between the current tools. 

5.2 Designing around Processes and Practices 
The findings also highlighted the need for the environment and 
tools to be responsive to the processes novices bring into the 
learning environment. Many of the participants’ were making 
decisions as they tinkered with the components, modifying their 

choices based on feedback (i.e. as a bricoleur [40]). The findings 
showed how the technology, could inhibit the learner’s process if 
not designed from this perspective. For example, when working 
with BitBlox participants had to reconfigure their existing 
components when adding new components. The tools need to 
take into consideration novices just-in-time designs, assisting 
learners in making and testing their iterative modifications. 

Learners also had processes in which the tools could be 
designed around. When participants were stuck they often would 
continuously upload the same code (similar to [28]), and 
consecutively change the delays. While these actions were often 
innocuous, data on what getting stuck looks like could inform 
designs for technology to offer hints or suggestions. 

There were also processes that we need to learn more about, 
such as the participants’ difficulties translating between different 
representations of their circuits. The issues seemed to stem from 
issues with spatial reasoning, usability, and theoretical 
misconceptions. Jayathirtha et al. [23] noted similar issues, 
confirming a need to understand how to scaffold these processes.    

The designs of the tools and materials should account for 
learners developing new practices—specifically debugging. 
Similar to other findings in CS [1, 16, 28], debugging was not 
something the participants were able to do without guidance. 
Even in Booth et al.’s [5] study debugging was difficult for 
experienced participants, and in Kafai et al.’s [26]  study, where 
they teach debugging skills, it still remained a challenge. We need 
to think critically about the ways that the tools can facilitate 
learners to identify and test their assumptions, develop systematic 
debugging processes, and understand how to use the tools to 
isolate components of the hardware and software to validate what 
in their design is correct and what is not.  

5.3 Designing around Visibility 
Participants’ low visibility into how the tools were working often 
exacerbated conceptual errors. In the software, participants lacked 
insight into how computer was compiling and interpreting their 
code, leading to a misunderstanding of what code was running. 
The looping structure, inherent to many microcontrollers, also 
caused confusion. Researchers in CS education have examined 
personifying the compiler [27] and aggregating useful suggestions 
based on other programmers actions [20]. Our research confirms 
this as an important consideration in physical computing 
environments as well.  

Similar to the software, participants lacked visibility into the 
hardware. Unless everything was setup correctly, there was little 
feedback into what was electrically connected, where voltage was 
being applied, or where current was actually flowing. Multimeters 
are the most prevalent tool for this, but they have steep learning 
curves and their own usability challenges. Researchers are 
beginning to experiment with other ways to bring visibility to 
these signals [15], which could improve conceptual understanding 
as well as usage of the tools. 

5 Conclusion 
The complexity of the physical computing environment presents 
a challenging design problem. Our findings suggest that the 
design of technology should continue to be explored to improve 
usability, more seamlessly integrate and develop the practices and 
processes of novices, and provide learners with greater visibility 
into the tools and how their designs are functioning.  
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